1)

If the  coefficients of x3 and x4 in the expansion of   $(1+ax+bx^{2})$  (1-2x)18 in powers of x are both zero, then (a,b) is equal to 


A) $(16,\frac{251}{3})$

B) $(14,\frac{251}{3})$

C) $(14,\frac{272}{3})$

D) $(16,\frac{272}{3})$

Answer:

Option D

Explanation:

 To find the coefficient of x3 and x4, use the formula of coefficient of xf  in (1-x)n is (-1)r  nCr   and then simplify.

 In expansion of    $(1+ax+bx^{2})$ (1-2x)18

 Coefficient of x3  = Coefficient of x3  in (1-2x)18+ coefficient of x2 ina  (1-2x)18 + Coefficient of x in b(1-2x)18.

=  $-^{18}C_{3}.2^{3}+a^{18}C_{2}.2^{2}-b^{18}C_{1}.2$

Given, coefficient of x3 =0

=$^{18}C_{3}.2^{3}+a^{18}C_{2}.2^{2}-b^{18}C_{1}.2$  =0

$\Rightarrow$    $-\frac{18\times 17 \times 16}{3\times 2}.8+a.\frac{18\times17}{2}.2^{2}-b.18.2=0$

    $\Rightarrow$    $ 17a-b=\frac{34\times16}{3}$     .......(i)

Simolarly coefficient of x4

    $^{18}C_{4}.2^{4}-a^{18}C_{3}.2^{3}-b^{18}C_{2}.2^{2}=0$

$\therefore $      $32a-3b=240$     ..........(ii)

On solving      Eqs (i) and (ii), we get,

   a=16,  $b=\frac{272}{3}$