Answer:
Option B
Explanation:
Use the following properties of transpose (AB)T=BTAT.(AT)T =A and A-1A= I and simplify
If A is a non-singular matrix, then |A|≠ 0
AAT=ATA and B=A-1AT
BBT=(A-1AT)(A-1AT)T= A-1 AT A(A-1)T ( $\therefore$ (AB)T=BTAT)
= A-1AAT(A-1)T ($\therefore$ AAT=AT.A)
= IAT (A-1)T ($\therefore$ A-1A=1)
=AT(A-1)T= (A-1A)T ($\therefore$ (AB)T=BTAT)
= IT=1