Answer:
Option D
Explanation:
If ax2+bx+c=0 , has roots α and β , then
α+β=−ba and αβ=ca . Find the valuesw of α+β and αβ and then put in (α−β)2=(α+β)2−4αβ to get required value.
Given α and β are roots of
px2+qx+r=0 , p≠0
∴ α+β = −qp , αβ= rp ......(i)
Since p,q and r are in A.P
∴ 2q=p+r ................(ii)
Also, 1α+1β=4
⇒ α+βαβ=4
⇒ α+β=4αβ
⇒ −qp=4rp [ from Eq.(i)]
⇒ q=-4r
On putting the value of q in Eq(ii) , we get ⇒ 2(-4r)=p+r ⇒ p=-9r
Now α+β=−qp=4rp=4r−9r=−49 and αβ=rp=r−9r=1−9
∴ (α−β)2=(α+β)2−4αβ=1681+49=16+3681
⇒ (α−β)2=5281⇒|α−β|=29√31