Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let   α   and β be the roots of equation px2+qx+r=0 , p0 . If p,q and r in AP and  1α+1β=4  , then the value of   |αβ| is 


A) 619

B) 2179

C) 349

D) 2139

Answer:

Option D

Explanation:

If    ax2+bx+c=0 ,  has roots  α and β   , then 

  α+β=ba    and    αβ=ca . Find the valuesw of   α+β  and αβ and then put in     (αβ)2=(α+β)24αβ    to get required value.

  Given   α   and β    are roots of   

                          px2+qx+r=0 , p0 

      α+β  = qp  ,   αβ=   rp    ......(i)

Since p,q and r are in A.P

      2q=p+r        ................(ii)

Also,    1α+1β=4

     α+βαβ=4

       α+β=4αβ

   qp=4rp  [ from Eq.(i)]

     q=-4r

 On putting the value of q in Eq(ii) , we get    2(-4r)=p+r    p=-9r

Now  α+β=qp=4rp=4r9r=49    and αβ=rp=r9r=19

    (αβ)2=(α+β)24αβ=1681+49=16+3681

    (αβ)2=5281|αβ|=2931