Processing math: 100%


1)

If  a ε R  and equation -3(x-[x])2+2(x-[x])+a2=0    (where,[x] denotes the greatest integer    x)  has no integral solution, then all possible values of  a lie  in the interval


A) (-1,0) (0,1)

B) (1,2)

C) (-2,-1)

D) (- , -2) (2, )

Answer:

Option A

Explanation:

Put  t= x -[x]={X}, which  is a fractional part function and lie between    0{x}  <1 and then solve it,

  Given    a ε R and equation is     

   -3(x-[x])2+2(x-[x])+a2=0   

  t=x-[x] , then equation is

3t2+2t+a2=0

      t=1±1+3a23

    t= x-[x]= {X}

                          { fractional part}

         0t1

                   01±1+3a231

Taking positive sign , we get 

     01+1+3a23<1                   [ {x}>0}

                1+3a2<21+3a2<4

                    a2-1<0

            (a+1)(a-1)<0

1832021242_mm.PNG

   for no integral  solution of a we consider the interval (-1,0)   (0,1) .

Note.  here, we figure out the integral solution , we get a=0, This implies any interval excluding zero should be correct answer as it gives either  no solution or no integral.