Answer:
Option A
Explanation:
Put t= x -[x]={X}, which is a fractional part function and lie between $0\leq \left\{x\right\}$ <1 and then solve it,
Given a ε R and equation is
-3(x-[x])2+2(x-[x])+a2=0
t=x-[x] , then equation is
$-3t^{2}+2t+a^{2}=0$
$\Rightarrow $ $ t=\frac{1\pm\sqrt{1+3a^{2}}}{3}$
$\therefore$ t= x-[x]= {X}
{ fractional part}
$\therefore$ $0\leq t\leq1$
$ 0\leq\frac{1\pm\sqrt{1+3a^{2}}}{3}\leq1$
Taking positive sign , we get
$ 0\leq\frac{1+\sqrt{1+3a^{2}}}{3}<1$ [ $\therefore$ {x}>0}
$\Rightarrow$ $ \sqrt{1+3a^{2}}<2\Rightarrow1+3a^{2}<4$
$\Rightarrow$ a2-1<0
$\Rightarrow$ (a+1)(a-1)<0
for no integral solution of a we consider the interval (-1,0) $ \cup$ (0,1) .
Note. here, we figure out the integral solution , we get a=0, This implies any interval excluding zero should be correct answer as it gives either no solution or no integral.