Answer:
Option B
Explanation:
$|z|\geq 2$ is the region on or outside circle whose centre is (0,0) and radius is 2 .
Minimum $|z+\frac{1}{2}|$ is distance of z, which
lie on circle |z|=2 from ( -$\frac{1}{2},0$)
$\therefore$ Minimum $|z+\frac{1}{2}|$ = Distance of ($-\frac{1}{2},0$) from (-2,0)
=$\sqrt{(-2+\frac{1}{2})^{2}+0}=\frac{3}{2}$
= $\sqrt{(-\frac{1}{2}+2)^{2}+0}=\frac{3}{2}$
Geometrically min $|z+\frac{1}{2}|$ = AD
Here minimum value of $(z+\frac{1}{2}) $ lies in the intervel (1,2)