Processing math: 100%


1)

If z is complex number such that   |z|2  then the minimum value of   |z+12|  


A) is equal to 5/2

B) lies in the interval (1,2)

C) is strictly greater than 5/2

D) is strictly greater than 3/2 but lies than 5/2

Answer:

Option B

Explanation:

|z|2  is the region on or outside circle whose centre is (0,0) and radius is 2 .

 Minimum   |z+12|   is distance of z, which

lie on circle |z|=2 from ( -12,0)

     Minimum  |z+12| = Distance of (12,0) from (-2,0)

                       =(2+12)2+0=32

            = (12+2)2+0=32

1832021311_circle.PNG

Geometrically min   |z+12| = AD

Here minimum value of   (z+12)   lies in the intervel (1,2)