Answer:
Option A
Explanation:
In order to solve the problem, calculate the value of cell constant of the first solution and then use this value of cell constant to calculate the value of k of second solution. Afterwards, finally, calculate molar conductivity using value of k and m.
For first solution,
k=1.4 Sm-1 , R=50Ω, M= 0.2
Specific conductance (k)= $\frac{1}{R}\times\frac{1}{A}$
$1.4 Sm^{-1}=\frac{1}{50}\times\frac{1}{A}$
$\frac{1}{A}=50\times 1.4 m^{-1}$
for second solution.
R=280, $\frac{1}{A}=50\times 1.4 m^{-1}$
$k=\frac{1}{280}\times50\times 1.4 =\frac{1}{4}$
Now, molar conductivity
$\lambda_{m}=\frac{K}{1000\times m}= \frac{1}{2000}=5\times 10^{-4}Sm^{2}mol^{-1}$