Answer:
Option D
Explanation:
Net force acting on anyone particle M,
$=\frac{GM^{2}}{(2R)^{2}}+\frac{GM^{2}}{(R\sqrt{2})^{2}}\cos 45^{0}+\frac{GM^{2}}{(R\sqrt{2})^{2}}\cos 45^{0}$
$=\frac{GM^{2}}{R^{2}}\left(\frac{1}{4}+\frac{1}{\sqrt{2}}\right)$
this force will equal to centripetal force.
So, $\frac{MV^{2}}{R}=\frac{GM^{2}}{R^{2}}\left(\frac{1}{4}+\frac{1}{\sqrt{2}}\right)$
$v=\sqrt{\frac{GM^{}}{4R^{}}(1+2\sqrt{2})}$
$=\frac{1}{2}\sqrt{\frac{GM^{}}{R^{}}(2\sqrt{2}+1)}$
Hence, speed of each particle in a circular motion is
$\frac{1}{2}\sqrt{\frac{GM^{}}{R^{}}(2\sqrt{2}+1)}$