Answer:
Option A
Explanation:
A block of mass m is placed on asurface with a vertical cross-section, then
$\tan \theta=\frac{dy}{dx}\frac{d\left(\frac{x^{3}}{6}\right)}{dx}=\frac{x^{2}}{2}$
At limiting equilibrium, we get
$\mu=\tan\theta$
$0.5=\frac{x^{2}}{2}$
$\Rightarrow$ $ x^{2}=1\Rightarrow x=\pm1$
Now, putting the value of x and y= $\frac{x^{3}}{6}$
we get
when x=1
$y=\frac{(1)^{3}}{6}=\frac{1}{6}$ ,
when x=-1
$y=\frac{(-1)^{3}}{6}=\frac{-1}{6}$
So, the maximum height above the ground at which the block can be placed without slipping is 1/6 m