Answer:
Option D
Explanation:
Plan
(i) P( at2, 2at) is one end point of focal chord of parabola y2=4ax,
then other end point is $(\frac{a}{t^{2}},-\frac{2a}{t})$
(ii) Slope of line joining two points (x1,y1) and (x2,y2) is given by $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
If PQ is foacl chord, then coordinates of Q will be $(\frac{a}{t^{2}},-\frac{2a}{t})$
Now, slope of QR= slope of PK
$\frac{2ar+2a/t}{ar^{2}-a/t^{2}}=\frac{2at}{at^{2}-2a}$
$\Rightarrow$ $ \frac{r+1/t}{r^{2}-1/t^{2}}=\frac{t}{t^{2}-2}$
$\Rightarrow$ $ \frac{1}{r-1/t}=\frac{t}{t^{2}-2}$
$\Rightarrow$ $ r-\frac{1}{t}=\frac{t^{2}-2}{t}=t-\frac{2}{t}$
$\Rightarrow$ $ r= t-\frac{1}{t}=\frac{t^{2}-1}{t}$