1)

For  $x \epsilon  (0,\pi)$  the equation   sin x+ 2 sin 2x-sin 3x=3 has 


A) Infinitely many solutions

B) three solutions

C) one solution

D) no solution

Answer:

Option D

Explanation:

 Plan for solving this type of questions , obtain the LHS and RHS in equation and examine , the two are equal  or not for a given interval

  Given, Trigonometrical Equation

         (sin x -sin 3x)+2 sin2x =3

  $\Rightarrow$     $ -2\cos 2x\sin x+4 \sin x \cos x=3$

$[\because $     $  \sin C-\sin D=2\cos\left(\frac{C+D}{2}\right)\sin\left(\frac{C-D}{2}\right) $  and $\sin2\theta=2\sin\theta\cos\theta]$

$\Rightarrow $   $2\sin x(2\cos x-\cos 2x)=3$

$\Rightarrow $   $ 2\sin x(2\cos x-\cos^{2} x+1)=3$

$\Rightarrow $    $2\sin x\left(\frac{3}{2}-2\left(\cos x-\frac{1}{2}\right)^{2}\right)=3$

$\Rightarrow $    $3\sin x-3=4(\cos x-\frac{1}{2})^{2}\sin x$

 As  $x\epsilon (0,\pi)$

       $LHS \leq 0 $   and  $ RHS\geq0$

 for solution to exist LRS=RHS

 Now, LHS =0 $\Rightarrow $ 3 sin x-3=0

$\Rightarrow $    sin x=1

$\Rightarrow $    $x=\frac{\pi}{2}$

 For $x=\frac{\pi}{2}$

  RHS=   $4\left(\cos\frac{\pi}{2}-\frac{1}{2}\right)^{2}\sin\frac{\pi}{2}$

  = $4\left(\frac{1}{4}\right)(1)=1\neq0$

 $\therefore$  No solution  of the equation exists