Answer:
Option B
Explanation:
Plan Newton - Leibnitz.s formula
$\frac{d}{dx}\left[\int_{\phi(X)}^{\psi (X)} f(t) dt \right]= f\left\{\psi(X)\right\}\left\{\frac{d}{dx}\psi(X)\right\}-f(\phi(X))\left\{\frac{d}{dx}\phi(X)\right\}$
Given, $F(X)=\int_{0}^{x^{2}} f(\sqrt{t})dt$
$\therefore$ F'(x)= 2x f(x)
Also, F '(x)= f' (x)
$\Rightarrow$ $2x f(x)=f'(x)\Rightarrow \frac{f'(x)}{f(x)}=2x$
$\Rightarrow$ $\int_{}^{} \frac{f '(x)}{f(x)}dx=\int_{}^{} 2x dx$
$\Rightarrow$ ln f(x)= x2+ c
$\Rightarrow$ $f(x)= e^{x^{2}}+c$
$\Rightarrow$ $f(x)= K e^{x^{2}}$ $ [K=e^{c}]$
Now, f(0)=1
1=K
Hence $f(x)= e^{x^{2}}$
$F(2)=\int_{0}^{4} e^{t} dt$
$=[e^{t}]_{0}^{4}=e^{4}-1$