1)

 The function y=f(x)  is the solution of the differential equation dydx+xyx21=x4+2x1x2   in (-1,1)

 satisfying f(0)=0, Then,   3/232f(x)dx  is


A) π332

B) π334

C) π634

D) π632

Answer:

Option B

Explanation:

 Plan 

 (i) solution  of the differential equation

 dydx+Py=Q  is 

 Y.(IF)=Q.(IF)dx+c

where,IF=ePdx

(ii)aaf(x)dx=2a0f(x)dx,

 if  f(-x)= f(x)

 Given differential  equation

dydx+xx21y=x4+2x1x2

 This is a linear differential solution

 IF=   exx21dx=e12ln|x21|

                                          = 1x2

    Solution  is

y1x2=x(x3+2)1x2.1x2dx

  or    y1x2=(x4+2x)dx

=x55+x2=c

    f(0)=0 c=0

        f(x)1x2=x55+x2

 Now,    3/23/2f(x)dx=3/23/2x21x2dx

                                                                                                                         [using property]

 =23/20x21x2dx

     =2π/30sin2θcosθcosθdθ

                              [ taking x= sin θ]

                =2π/30sin2θdθ

   =π/30(1cos2θ)dθ

   =  (θsin2θ2)π/30

  =  π3sin2π/32

          =  π334