Answer:
Option B
Explanation:
Plan
(i) solution of the differential equation
dydx+Py=Q is
Y.(IF)=∫Q.(IF)dx+c
where,IF=e∫Pdx
(ii)∫a−af(x)dx=2∫a0f(x)dx,
if f(-x)= f(x)
Given differential equation
dydx+xx2−1y=x4+2x√1−x2
This is a linear differential solution
IF= e∫xx2−1dx=e12ln|x2−1|
= √1−x2
⇒ Solution is
y√1−x2=∫x(x3+2)√1−x2.√1−x2dx
or y√1−x2=∫(x4+2x)dx
=x55+x2=c
f(0)=0 ⇒ c=0
⇒ f(x)√1−x2=x55+x2
Now, ∫√3/2−√3/2f(x)dx=∫√3/2−√3/2x2√1−x2dx
[using property]
=2∫√3/20x2√1−x2dx
=2∫π/30sin2θcosθcosθdθ
[ taking x= sin θ]
=2∫π/30sin2θdθ
=∫π/30(1−cos2θ)dθ
= (θ−sin2θ2)π/30
= π3−sin2π/32
= π3−√34