Answer:
Option A
Explanation:
Plan This type of question can be done using appropriate subsitiution
Given, I=∫π/2π/4(2cosec x)17 dx
217(cosec x)16cosecx
=∫π/2π/4(cosecx+cotx)(cosecx+cotx)dx
Let cosec x+cot x=t
⇒ (−cosec x.cot x−cosec2 x)dx= dt
and cosec x−cot x=1/t
⇒2cosec x=t+1t
∴I=−∫1√2+1217(t+1/t2)16dtt
Let t= eu ⇒ dt = eu du. when t=1
eu =1
⇒
u=0
and when t=√2+1,eu=√2+1
⇒ u=ln(√2+1)
⇒ I=−∫0ln(√2+1)2(eu+e−u)16eudueu
= 2∫ln(√2+1)0(eu+e−u)16du