Answer:
Option B
Explanation:
Plan
(i) cosC=a2+b2−c22ab
(ii) R= abc4△,r=△s
where, R,r,△ denote the circumradius , inradius and area of traingle , respectively
Let the sides of triangle be a,b, and c
Given x=a+b+c
y=ab
x2-c2=y
⇒ (a+b)2-c2=y
⇒ a2+b2+2ab-c2=ab
⇒ a2+b2-c2=-ab
⇒ a2+b2−c22ab=−12
= cos1200
⇒ ∠C=2π3
∴ R= abc4△,r=△s
⇒ rR=4△2s(abc)
=4[12absin(2π3)]2x+y2.y.c
∴ rR=3y2c(x+c)