Processing math: 100%


1)

 In a triangle, the sum of two sides is x  and the product of the same two sides is y. If x2-  c2  = y,  where c is the third side of the triangle, then the ratio of the inradius to the circumradius  of the triangele is 


A) 3y2x(x+c)

B) 3y2c(x+c)

C) 3y4x(x+c)

D) 3y4c(x+c)

Answer:

Option B

Explanation:

  Plan

    (i)  cosC=a2+b2c22ab

(ii)    R= abc4,r=s

  where, R,r,  denote the circumradius , inradius and area of traingle , respectively

 Let the sides of triangle  be a,b, and c 

 Given  x=a+b+c

     y=ab

   x2-c2=y

              (a+b)2-c2=y

      a2+b2+2ab-c2=ab

     a2+b2-c2=-ab

     a2+b2c22ab=12

                                  = cos1200

                   C=2π3

                        R= abc4,r=s

     rR=42s(abc)

=4[12absin(2π3)]2x+y2.y.c

         rR=3y2c(x+c)