1)

Box I contains three cards bearing numbers 1,2,3: box II  contains five cards bearing numbers 1,2,3,4,5  and box III  contained seven cards bearing numbers 1,2,3,4,5, 6,7. A card is drawn from each of the boxes. Let xbe the numbers on the card drawn from i th box i=1,2,3.

The probability that x1 +x2+x is odd is


A) $\frac{29}{105}$

B) $\frac{53}{105}$

C) $\frac{57}{105}$

D) $\frac{1}{2}$

Answer:

Option B

Explanation:

 Plan 

  Probability =  Number of favourable outcomes /  Number of total outcomes

  As   x1 +x2+x is odd 

 So, all may be odd or one  of them is odd and other two are even

 $\therefore$ Required probability

$\frac{^{2}C_{1}\times^{3}C_{1}\times^{4}C_{1}+^{1}C_{1}\times^{2}C_{1}\times^{4}C_{1}+^{2}C_{1}\times^{2}C_{1}\times^{3}C_{1}+^{1}C_{1}\times^{3}C_{1}\times^{3}C_{1}}{^{3}C_{1}\times^{5}C_{1}\times^{7}C_{1}}$

        = $\frac{24+8+12+9}{105}=\frac{53}{105}$