1)

Assuming 2s-2p mixing is not operative, the paramagnetic  species among the following is 


A) $Be_{2}$

B) $B_{2}$

C) $C_{2}$

D) $N_{2}$

Answer:

Option C

Explanation:

Plan  This problem  can be solved by using the  concept  involved in molecular orbital theory . Write the molecular orbital electronic configuration keeping in mind  that there is no 2s-2p mixing then if highest occupied molecular orbital contain unpaired electron then molecule is paramagnetic  otherwise diamagnetic

 Assuming that no 2s-2p mixing takes  place the molecular orbital electronic  configuration can be written in the following sequence of energy levels of molecular orbitals

   $\sigma 1s,\sigma*1s,\sigma2s,\sigma*2s, \sigma 2p_{z},\pi2p_{x}\equiv\pi2p_{y},\pi *2p_{x}\equiv\pi*2p_{y},\sigma*2p_{z}$

(a)   $Be_{2}\rightarrow \sigma 1s^{2},\sigma*1s^{2},\sigma2s^{2},\sigma*2s^{2}$  (diamagnetic)

(b) $B_{2}\rightarrow \sigma 1s^{2},\sigma*1s^{2},\sigma2s^{2},\sigma*2s^{2},\sigma 2p_z^2 ,_{\pi 2p_y^0 } ^{ \pi 2p_x^0}$

                                                                                                                                    (diamagnetic)

(c)    $C_{2}\rightarrow \sigma 1s^{2},\sigma*1s^{2},\sigma2s^{2},\sigma*2s^{2}, \sigma 2p_z^2, _{\pi 2p_y^1 } ^{ \pi 2p_x^1},$

$_{\pi*2p_y^0}^{\pi*2p_x^0} ,\sigma*2p_z^0  (paramagnetic) $

  (d) $N_{2}\rightarrow \sigma 1s^{2},\sigma*1s^{2},\sigma2s^{2},\sigma*2s^{2}, \sigma2p_z^2,_{\pi 2p_y^2}^{\pi2p_x^2},$

$_{\pi*2p_y^0}^{\pi*2p_x^0} ,\sigma*2p_z^0  (diamagnetic) $

 Hence (c) is the correct choice