Answer:
Option B
Explanation:
(P) $ \frac{1}{r}=\left(\frac{3}{2}-1\right)\left(\frac{1}{r}+\frac{1}{r}\right)=\frac{1}{r}$
$\Rightarrow f=r$
$\Rightarrow$ $\frac{1}{f_{eq}}=\frac{1}{f}+\frac{1}{f}=\frac{2}{r}$
$\Rightarrow$ feq=\frac{r}{2}$
(Q) $ \frac{1}{r}=\left(\frac{3}{2}-1\right)\left(\frac{1}{r}\right)\Rightarrow f=2r$
$\Rightarrow$ $\frac{1}{f}+\frac{1}{f}=\frac{2}{f}= \frac{1}{r}$
$\Rightarrow$ feq=r
(R) $ \frac{1}{f}=\left(\frac{3}{2}-1\right)\left(-\frac{1}{r}\right)\Rightarrow -\frac{1}{2r}$
$\Rightarrow$ f=-2r
$\Rightarrow$ $\frac{1}{f_{eq}}=\frac{1}{f}+\frac{1}{f}=\frac{2}{2r}$
$\Rightarrow$ feq=-r
(S)
$\frac{1}{f_{eq}}=\frac{1}{r}+\frac{1}{-2r}=\frac{1}{2r}$
$\Rightarrow$ feq=2r