Answer:
Option B
Explanation:
Given, $R_{planet}=\frac{R_{earth}}{10}$
and density , $\rho= \frac{M_{earth}}{\frac{4}{3}\pi R_{earth}^{3}}$
$\Rightarrow$ $ M_{planet}=\frac{M_{planet}}{10^{3}}$
gsurface of planet $=\frac{GM_{planet}}{R^{2}_{planet}}$
$=\frac{GM_{e}.10^{2}}{10^{3}.R^{2}_{e}}$
$=\frac{GM_{e}.}{10^{}.R^{2}_{e}}$
=gsurface of earth/10
g depth of planet= g surafce of planet $\left(\frac{X}{R}\right)$
where x= distance from centre of planet.
$\therefore$ Total force on wire
$F=\int_{4R/5}^{R} \lambda dx g\left(\frac{X}{R}\right)$
= $\frac{\lambda g}{R}\left[\frac{X^{2}}{2}\right]_{4R/5}^{R}$
Here g= g surface of planet
R= Rplanet
Substituting the given values , we get F=108N