Answer:
Option B
Explanation:
$k_{\alpha}$ transition takes place from n1=2 to n2=1
$\therefore$ $ \frac{1}{\lambda}=R(Z-b)^{2}\left[\frac{1}{(1)^{2}}-\frac{1}{(2)^{2}}\right]$
For K-series, b=1
$\therefore$ $ \frac{1}{\lambda}\propto (Z-1)^{2}$
$\Rightarrow$ $ \frac{\lambda_{Cu}}{\lambda_{Mo}}=\frac{(z_{M0}-1)^{2}}{(z_{Cu}-1)^{2}}$
=$\frac{(42-1)^{2}}{(29-1)^{2}}=\frac{41\times41}{28\times 28}$
$=\frac{1681}{784}=2.144$