Answer:
Option B
Explanation:
Plan
(i) a,b,c are in G.P ,
then they can be taken as a, ar, ar2 where r,(r ≠ 0) is the common ratio
(ii) Arithmetic mean of x1,x2,............xn
= $\frac{x_{1}+x_{2}+....+x_{n}}{n}$
Let a,b,c are a,ar, ar2 , where rε N
Also, $\frac{a+b+c}{3}=b+2$
$\Rightarrow$ a+ar+ar2= 3(ar)+6
$\Rightarrow$ ar2-2ar+a =6
$\Rightarrow$ (r-1)2 = $\frac{6}{a}$
$\because$ 6/a must be perfect square a ε N
$\therefore$ a can be 6 only.
$\Rightarrow$ $ r-1=\pm1\Rightarrow r=2$
and $\frac{a^{b}+a-14}{a+1}=\frac{36+6-14}{7}=4$