Answer:
Option B
Explanation:
Plan
(i)a.b= |a|.|b| cosθ
(ii) [a b c]2= [a.aa.ba.cb.ab.bb.cc.ac.bc.c]
a.a=|a|2 =1,similarly b.b=c.c=1
a.b=|a||b|cos (π3)=(12)similarly
b.c=c.a=12
[a b c]2= [a.aa.ba.cb.ab.bb.cc.ac.bc.c]
= [112121211212121]=34−12=12
∴ [a.b.c]=1√2 .........(i)
As , given a x b+b x c=pa+qb+rc
Take dot product with a
a.(axb)+a.(bxc) = p a2+q b2+r c.a
⇒ 0+1√2=p+q2+r2
∴ [a a b]=0
Now, take dot product with b and c
0=p2+q+r2 ......(iii)
and 1√2=p2+q2+r .......(iv)
On subtracting Eq(ii) from Eq. (iv), we get
p2−r2=0⇒p=r
⇒ p+r=0 [By Eq.(iii)]
∴ p2+2q2+r2q2
=p2+2p2+p2p2=4