Processing math: 100%


1)

Let a,b and c be three  non-coplanar unit vectors such that  the  angle betwwen every  pair of them is   π /3, if a x b +b x c  =pa+qb+rc, where p,q, r are scalars , then  the value of   p2+2q2+r2q2 is


A) 5

B) 4

C) 3

D) 2

Answer:

Option B

Explanation:

Plan

(i)a.b= |a|.|b| cosθ

(ii)   [a b c]2[a.aa.ba.cb.ab.bb.cc.ac.bc.c]

a.a=|a|2 =1,similarly b.b=c.c=1

a.b=|a||b|cos (π3)=(12)similarly

b.c=c.a=12

  [a b c]2[a.aa.ba.cb.ab.bb.cc.ac.bc.c]

  = [112121211212121]=3412=12

                      [a.b.c]=12         .........(i)

As , given a x b+b x c=pa+qb+rc

  Take dot  product  with a

a.(axb)+a.(bxc)  = p a2+q b2+r c.a

                                   0+12=p+q2+r2

                   [a a b]=0

Now, take dot product  with b and c

           0=p2+q+r2         ......(iii)

 and            12=p2+q2+r        .......(iv)

 On subtracting Eq(ii) from Eq. (iv), we get

  p2r2=0p=r

p+r=0   [By Eq.(iii)]

   p2+2q2+r2q2

                                                   =p2+2p2+p2p2=4