Answer:
Option A
Explanation:
Plan Intergration by parts
∫f(x)g(x)dx=f(x)∫g(x)dx−∫(ddx[f(x)]∫g(x)dx)dx
Given I=∫104x3d2dx2(1−x2)5dx
=[4x3ddx(1−x2)5]10−∫1012x2ddx(1−x2)5dx
=[4x3×5(1−x2)4(−2x)]10
−12[(x2(1−x2)5]10−∫102x(1−x2)5dx]
=0-0-12(0-0)
+ 12∫102x(1−x2)5dx
= 12×[−(1−x2)66]10
= 12[0+16]=2