1)

Let   n1<n2 <n3<n4  < n5  be positive integers such that n1+n2+n3+n4+n5=20. The numbers of such  distinct arrangements ( n1,n2,n3,n4,n5)    is 


A) 5

B) 6

C) 4

D) 7

Answer:

Option D

Explanation:

Plan, Reducing the equation to a newer question, where sum of variables is less. Thus , find ing the number of arrangements  becomes easier

 As, n11 , n22, n33, n44,n55 

 Let  n1 -1= x1  0,  n2-2 =x2   0, ....... n5-5 =x5   0

New equation will be

x1+1+x2+2+.........x5+5=20

    x1+x2+x3+x4+x5

                    =20-15=5

  Now,    x1    x2  x3    x4    x5

2632021709_m5.PNG

  

 So, 7 possible  cases will be there