1)

Let   $n_{1}$<$n_{2}$ <$n_{3}$<$n_{4}$  < $n_{5}$  be positive integers such that $n_{1}$+$n_{2}$+$n_{3}$+$n_{4}$+$n_{5}$=20. The numbers of such  distinct arrangements ( $n_{1}$,$n_{2}$,$n_{3}$,$n_{4}$,$n_{5}$)    is 


A) 5

B) 6

C) 4

D) 7

Answer:

Option D

Explanation:

Plan, Reducing the equation to a newer question, where sum of variables is less. Thus , find ing the number of arrangements  becomes easier

 As, $n_{1}\geq 1$ , $n_{2}\geq 2$, $n_{3}\geq 3$, $n_{4} \geq 4$,$n_{5}\geq 5$ 

 Let  n1 -1= x1 $\geq$ 0,  n2-2 =x2  $\geq$ 0, ....... n5-5 =x5  $\geq$ 0

New equation will be

x1+1+x2+2+.........x5+5=20

    x1+x2+x3+x4+x5

                    =20-15=5

  Now,    x1  $\leq$  x2 $\leq$ x3   $\leq$ x4   $\leq$ x5

2632021709_m5.PNG

  

 So, 7 possible  cases will be there