Answer:
Option C
Explanation:
Plan Distance of a point (x1,y1) from ax+bx+c=0 is given by
$|\frac{ax_{1}+by_{1}+c}{\sqrt{a^{2}+b^{2}}}|$
Let P(x,y) is the point in first quadrant.
Now, $2\leq |\frac{x-y}{\sqrt{2}}|+|\frac{x+y}{\sqrt{2}}|\leq 4$
$2\sqrt{2}\leq |x-y|+|x+y|\leq4\sqrt{2}$
Case I $x \geq y$
$2\sqrt{2}\leq (x-y)+(x+y)\leq4\sqrt{2}$
$\Rightarrow$ $ x \in (\sqrt{2},2\sqrt{2})$
Case II x<y
$2\sqrt{2}\leq y-x+(x+y)\leq4\sqrt{2}$
$y \in (\sqrt{2},2\sqrt{2})$
$\Rightarrow$ $A=(2\sqrt{2})^{2}-(\sqrt{2})^{2}=6$