1)

Let x,y and z be three vectors each of magnitude  $\sqrt{2}$ and the angle between each pair of them is   $\frac{\pi}{3}$. If a is a   non-zero  vector perpendicular to x and y $\times$ z  and b is a non-zero vector perpendicular to y and z $\times$ x, then


A) b=(b.z) (z-x)

B) a=(a.y)(y-z)

C) a.b= -(a.y)(b.z)

D) a=(a.y) (z-y)

Answer:

Option A,B,C

Explanation:

Plan  

(i) Dot product let a and be be two non-zero vectors inclined at an angle θ . Then a.b=|a| |b| cos θ

(ii) The direction of a x b  is perpendicular to the plane of a and b

 (iii) Vector triple product

   a x (b x c)= (a.c) b-  (a.b) c

 Given  that  |x|=|y|=|z|=   $\sqrt{2}$

 and angle between each pair  is   $\frac{\pi}{3}$

   $\therefore$       $  x.y=|x||y|\cos\frac{\pi}{3}$

 $=(\sqrt{2})(\sqrt{2})(\frac{1}{2})=1$

Similarly, y.z=z.x=1

also, x . x=|x|2 =2

similarly,  y.y=z.z= 2

now, $a \bot $ x  and y $\times$ x 

Let,                    a= $\lambda $ [x $\times$ (y $\times$ z)]

                                   a= $\lambda $ [(x.z)y-(x.y)z]

     a=$\lambda $ (y-z)

                              (as x.z =x.y=1)

       a.y=  $\lambda $ (y-z).y

  a.y= $\lambda $(y.y-y.z)=$\lambda $ (2-1)

                              ( as y.y=2=y.z=1)

     a.y= $\lambda $

    $\Rightarrow$                           a= (a.y) (y-z)         .......(i)

 Also , $b \bot $ y and z $\times$ x

                        b= $\mu$  { y x (z x x)]

                              = $\mu$ [(y .x)z-(y.z)x]

                                      = $\mu$   (z-x)

                                                             [as    y.x=y.z=1)

          b.z= $\mu$ (z-x).z

               = $\mu$  (z.z -x.z]

                 = $\mu$ (2-1)=  $\mu$

 $\Rightarrow$               b= (b.z) (z-x)           ...........(ii)

  Now using Eqs.( i) and (ii), we get

               a.b= (a.y)(y-z).(b.z)(z-x)

                     =  (a.y)(b.z)(y.z-y.x. -z.z+z.x)

                     =(a,y)(b.z)(1-1-2+1)

                        a.b= -(a.y)(b.z)