Answer:
Option C,D
Explanation:
Plan A square matrix M is invertible if det(M) or |M| $\neq$ 0,
Let $M=\begin{bmatrix}a & b \\b & c \end{bmatrix}$
(a) Given that $\begin{bmatrix}a \\b \end{bmatrix}=\begin{bmatrix}b \\c \end{bmatrix}$
$\Rightarrow$ a=b=c= $\alpha$ (let)
$\Rightarrow$ M= $\begin{bmatrix}\alpha & \alpha \\\alpha & \alpha \end{bmatrix}$
$\Rightarrow$ |M|=0
$\Rightarrow$ Mis non-invertible
(b) Given that [b c]=[a b]
$\Rightarrow$ a=b=c = $\alpha$ (let)
Again |M|=0
$\Rightarrow$ M is non-invertible
(c) As given $M=\begin{bmatrix}a & 0 \\0 & c \end{bmatrix}$
$\Rightarrow$ $|M|=ac\neq0$
( $\because$ a and c are non-zero)
$\Rightarrow$ Mis invertiable
(d) $M=\begin{bmatrix}a & b \\b & c \end{bmatrix}\Rightarrow|M|=ac-b^{2}\neq 0$
$\because$ ac is not equal to square of an integer.
$\because$ M is invertiable