Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

Let   f:[a,b][1,]   be a continuous function and g:R → R be defined as {0ifx<axaf(t)dt,ifaxbbaf(t)dtifx>bThen,


A) g(x) is continuous but not differentiable at a

B) g(x) is differentiable on R

C) g(x) is continuous but not differentiable at b

D) g(x) is continuous and differentiable at either a or b but not both

Answer:

Option A,C

Explanation:

Plan  A function f(x) is continuous at x=a, if 

limxa f(x)= limxa+ f(x=f(a))

  limxaf(x)f(a)xa=limxa+f(x)f(a)xa

 i.e, f '(a-)=f '(a+)

 Given that   f:[a,b][1,]

   and     {0ifx<axaf(t)dt,ifaxbbaf(t)dtifx>b

 Now, g(a-)=0=g (a+)=g(a)

[as     g(a+)limxa+xaf(I)dt=0

  and  g(a)=aaf(t)dt=0 ]

g(b)=g(b+)=g(b)=baf(t)dt

   is continuous   , xϵR

 Now,     g(x)={0x<af(x),a<x<b0x>b

 g'(a-)=0 but g'(a+)= f(a)1 

 [    Range of f(x)  is   [1,),x[a,b]]

  g is non-differentiable at x=a

 and g'(b+ )=0

 but   g(b)=f(b)1

  g is not differentiable at x=b