Answer:
Option A,C
Explanation:
Plan A function f(x) is continuous at x=a, if
limx→a− f(x)= limx→a+ f(x=f(a))
limx→a−f(x)−f(a)x−a=limx→a+f(x)−f(a)x−a
i.e, f '(a-)=f '(a+)
Given that f:[a,b]→[1,∞]
and {0ifx<a∫xaf(t)dt,ifa≤x≤b∫baf(t)dtifx>b
Now, g(a-)=0=g (a+)=g(a)
[as g(a+)limx→a+∫xaf(I)dt=0
and g(a)=∫aaf(t)dt=0 ]
g(b−)=g(b+)=g(b)=∫baf(t)dt⇒
is continuous , ∀xϵR
Now, g′(x)={0x<af(x),a<x<b0x>b
g'(a-)=0 but g'(a+)= f(a)≥1
[ ∵ Range of f(x) is [1,∞),∀x∈[a,b]]
⇒ g is non-differentiable at x=a
and g'(b+ )=0
but g′(b−)=f(b)≥1
⇒ g is not differentiable at x=b