Answer:
Option B
Explanation:
Let $d=k(\rho)^{a}(S)^{b}(f)^{c}$
where, k is a dimensionless, then
$[L]=\left[ \frac{M}{L^{3}}\right]^{a}\left[\frac{ML^{2}T^{-2}}{L^{2}T}\right]^{b}\left[\frac{1}{T}\right]^{c}$
Equating the powers of M and L , we have
0=a+b ........(i)
1= -3a...........(ii)
Solving these two equations , we get
$b=\frac{1}{3}$ $\therefore n=3$