Answer:
Option D
Explanation:
Angular impluse = change in angular momentum
$\therefore$ $\int_{}^{} \tau dt=I\omega$
$\Rightarrow$ $ \omega=\frac{\int_{}^{}\tau dt }{I}$
$=\frac{\int_{}^{}3F \sin 30^{0}R dt }{I}$
substituting the values, we have
$\omega=\frac{3(0.5)(0.5)(0.5)(1)}{\frac{1.5(0.5)^{2}}{2}}=2rad/s$