Answer:
Option A,B,D
Explanation:
Let us take $V_{P}=0$ .Then potentials acrosds $R_{1}$, $R_{2}$ and $R_{3}$ are as shown in figure(ii)
In the same figure.
i1 +i2 =i3
$\therefore$ $ \frac{V_{1}-V_{0}}{R_{1}}+\frac{0-V_{0}}{R_{2}}=\frac{V_{0}-(-V_{2})}{R_{3}}$
Solving this equation we get,
$V_{0}=\frac{\frac{V_{1}}{R_{1}}+0-\frac{V_{2}}{R_{2}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}}$
Current througfh R2 will be zero if
$V_{0}=0\Rightarrow\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}}$
In options (a),(b), and (d) this reaction is satisfied