1)

 A transparent thin film of uniform thickness and refractive index n1=1.4 is coated on the convex spherical surface of radius  R at one end of a long solid glass cylinder of refractive index n2=1.5, as shown in the figure. Rays of light parallel to the axis of the cylinder traversing through the film from air to glass get focused at distance f1 from the film, while rays of light traversing from glass to air get focused at distance f2 from the film, then

2132021202_trans.JPG

 


A) $|f_{1}|=3R$

B) $|f_{1}|=2.8R$

C) $|f_{2}|=2R$

D) $|f_{2}|=1.4R$

Answer:

Option A,C

Explanation:

$\frac{1}{f_{film}}=(n_{1}-1)\left(\frac{1}{R}-\frac{1}{R}\right)$

$\Rightarrow$  $f_{film}=\infty $           (infinite)

$\therefore$ There is no effect of presence  of  film.

From Air to Glass

  Using  the equation

                   $\frac{n_{2}}{v}-\frac{1}{u}=\frac{n_{2}-1}{R}$

  $\frac{1.5}{v}-\frac{1}{\infty}=\frac{1.5-1}{R}$

 $\Rightarrow$    v=3R

  $\therefore$ f1=3R

From Glass to Air, Again using  same equation

$\frac{1}{v}-\frac{n_{2}}{u}=\frac{1-n_{2}}{-R}$

  $\Rightarrow$   $ \frac{1}{v}-\frac{1.5}{\infty}=\frac{1-1.5}{-R}$

$\Rightarrow$  v=2R

      $\therefore$ f2= 2R