Answer:
Option A,C
Explanation:
$\frac{1}{f_{film}}=(n_{1}-1)\left(\frac{1}{R}-\frac{1}{R}\right)$
$\Rightarrow$ $f_{film}=\infty $ (infinite)
$\therefore$ There is no effect of presence of film.
From Air to Glass
Using the equation
$\frac{n_{2}}{v}-\frac{1}{u}=\frac{n_{2}-1}{R}$
$\frac{1.5}{v}-\frac{1}{\infty}=\frac{1.5-1}{R}$
$\Rightarrow$ v=3R
$\therefore$ f1=3R
From Glass to Air, Again using same equation
$\frac{1}{v}-\frac{n_{2}}{u}=\frac{1-n_{2}}{-R}$
$\Rightarrow$ $ \frac{1}{v}-\frac{1.5}{\infty}=\frac{1-1.5}{-R}$
$\Rightarrow$ v=2R
$\therefore$ f2= 2R