1)

The heater of an electric kettle is made of a wire of length  L and diameter d. It takes 4 minutes to raise the temperature of 0.5 kg water by 40K. This heater is replaced by a new heater having two wires of the same material, each of length L and diameter 2d.The way these wires are connected is given in the options. How much time in minutes will it take to raise the temperature of the same amount of water by 40K?


A) 4, if wires are in parallel

B) 2, if wires are in series

C) 1, if wires are series

D) 0.5, if wires are in parallel

Answer:

Option B,D

Explanation:

 Resistance of initially  given kettle3

   $R=\rho\frac{1}{A}=\rho$

$\frac{L}{\pi(d/2)^{2}}=\frac{4\rho L}{\pi d^{2}}$

Power , $P=\frac{V^{2}}{R}$

  or            $P\propto\frac{1}{R}$

   Resistance of two replaced kettles

             $R_{1}=\frac{\rho L}{\pi d^{2}}$

 and 

                 $R_{2}=\frac{\rho L}{\pi d^{2}}$

So    $R_{1}=R_{2}=\frac{R}{4}$

 if wires are in parallel then  equivalent resistanece

   $R_{p}=\frac{R_{1}R_{2}}{R_{1}+R_{2}}=\frac{R}{8}$

 Then power Pp=8p                   (as $P\propto\frac{1}{R}$]

 So, it will take 0.5 minute

   (as H=Pt  or      $t=\frac{H}{p}$      or  $t\propto\frac{1}{p}$ )

 if wires are in series then  equivalent resistanece

RS=R1+R2=R/2

 tthen power Ps= 2P

 So, it will take 2 minutes.