Answer:
Option A
Explanation:
Let AB =x

In △ DAM, tan(π−θ−α)=px−q
⇒ tan(θ+α)=pq−x
⇒ q−x=pcot(θ+α)
⇒ x=q−pcot(θ+α)
=q−p(cotθcotα−1cotα+cotθ)
(∵cotα=qp)
=q−p(qpcotθ−1qp+cotθ)
=q−p(qcotθ−pq+pcotθ)
=q−p(qcosθ−psinθqsinθ+pcosθ)
⇒q2sinθ+pqcosθ−pqcosθ+p2sinθpcosθ+qsinθ
⇒AB=(p2+q2)sinθpcosθ+qsinθ