Answer:
Option B
Explanation:
Given , $T_{n}=^{n}C_{3}$
$T_{n+1}=^{n+1}C_{3}$
$\therefore$ $T_{n+1}-T_{n}=^{n+1}C_{3}-^{n}C_{3}=10(given)$
$\Rightarrow $ $^{n}C_{2}+^{n}C_{3}-^{n}C_{3}=10$
$(\because ^{n}C_{r}+^{n}C_{r+1}=^{n+1}C_{r+1})$
$\Rightarrow $ $ ^{n}C_{2}=10\Rightarrow n=5$