Answer:
Option A
Explanation:
Given curves are y=√x ........(i)
and 2y-x+3=0 .......(ii)

On solving Eqs(i) and (ii) , we get
2√x−(√x)2+3=0
⇒ (√x)2−2√x−3=0
⇒ (√x−3)(√x+1)=0
⇒ √x=3
( ∴ √x=−1 is not possible)
∴ y=3
∴ Required area = ∫30(x2−x1)dy
∫30((2y+3)−y2)dy
= [y2+3y−y33]30
=9+9-9=9