Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The term independent of x in expansion of 

(x+1x23x13+1x1xx12)10is


A) 4

B) 120

C) 210

D) 310

Answer:

Option C

Explanation:

    [x+1x23x13+1x1xx12]10

= [(x13)3+13x23x13+1((x))21x(x1)]10

  = [(x13+1)(x2/3+1x1/3x23x13+1((x))21x(x1)]10

   =   [(x1/3+1)(x+1)x]10

       = (x1/3x1/2)10

  The general term is

        Tr+1=10Cr(x1/3)10r(x1/2)r

        =  10Cr(1)rx10r3r2

 For independent of x, put

10r3r2=0202r3r=0

     20=5rr=4

        T5=10C4=10×9×8×74×3×2×1=210