Answer:
Option C
Explanation:
∴ [x+1x23−x13+1−x−1x−x12]10
= [(x13)3+13x23−x13+1−((√x))2−1√x(√x−1)]10
= [(x13+1)(x2/3+1−x1/3x23−x13+1−((√x))2−1√x(√x−1)]10
= [(x1/3+1)−(√x+1)√x]10
= (x1/3−x−1/2)10
∴ The general term is
Tr+1=10Cr(x1/3)10−r(−x−1/2)r
= 10Cr(−1)rx10−r3−r2
For independent of x, put
10−r3−r2=0⇒20−2r−3r=0
⇒ 20=5r⇒r=4
∴ T5=10C4=10×9×8×74×3×2×1=210