Answer:
Option B
Explanation:
Given equation of ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Here, a=4,b=3, $e=\sqrt{1-\frac{9}{16}}\Rightarrow\frac{\sqrt{7}}{4}$
$\therefore$ Foci is (±,0)= $\left(\pm4\times \frac{\sqrt{7}}{4},0\right)$
$= \left(\pm \sqrt{7},0\right)$
$\therefore$ Radius of the circle,
$r= \sqrt{(ae)^{2}+b^{2}}=\sqrt{7+9}=\sqrt{16}=4$
Now, equation of circle is
$(x-0)^{2}+(y-3)^{2}=16$
$\therefore$ $x^{2}+y^{2}-6y-7=0$