Answer:
Option D
Explanation:
Let I= ∫π/3π/6dx1+√tanx .........(i)
∴ I =∫π/3π/6dx1+√tan(π2−x)
= ∫π/3π/6dx1+√cotx
⇒ I=∫π/3π/6√tanxdx1+√tanx........(ii)
On adding Eqs.(i) and (ii) , we get
2I=∫π/3π/6dx⇒2I=[x]π/3π/6
⇒I=12[π3−π6]=π12
Statement I false
But ∫baf(x)dx=∫baf(a+b−x)dx
true statement by property of definite integrate