1)

 if x, y and z are  in AP and tan-1x, tan-1y and tan-1 z are also in AP, then


A) x=y=z

B) 2x=3y=6z

C) 6x=3y=2z

D) 6x=4y=3z

Answer:

Option A

Explanation:

 Since x,y and z are in AP

 $\therefore$              2y=x+z

 also  tan-1x, tan-1y and tan-1 z  are in AP

 $\therefore$  2 tan-1y=tan-1x= tan-1 (z)

$    \Rightarrow$    $ \tan^{-1}\left(\frac{2y}{1-y^{2}}\right)=\tan^{-1} \left(\frac{x+z}{1-xz}\right)$

$    \Rightarrow$     $ \left(\frac{x+z}{1-y^{2}}\right)= \left(\frac{x+z}{1-xz}\right)\Rightarrow y^{2}=xz$  Since x,y and z are in AP as well as in GP

    $\therefore$   x=y=z