Processing math: 100%


1)

The number of values of k, for which the system of equations (k+1)x+8y=4k

    kx+(k+3)y=3k-1   has no solution , is 


A) infinite

B) 1

C) 2

D) 3

Answer:

Option B

Explanation:

Given equations can be written in matrix form

 AX=B

 Where, A= [k+18kk+3]=[xy]and[4k3k1]

 For no solution , |A|= 0  and (adj A)B≠ 0

nOW, |A|=   [k+18kk+3]=0

       (k+1)(k+3)-8K=0

     k2+4k+3-8k=0

    k2-4k+3=0

     (k-1) (k-3)=0

    k=1,k=3

   Now, adj A=   [k+38kk+1]

  Now, (adj A)B=  [k+38kk+1]   [4k3k1]

     =   [(k+3)(4k)8(3k1)4k2+(k+1)(3k1)]

   =  [4k212k+8k2+2k1]

  Put k=1

(adj A)B=   [41281+21]=[00]   not true

 Put k=3

 (adj A) B=   [3636+89+61]=[84]0   true

 Hence , required value of k is 3

    only onne value of k exist