Answer:
Option C
Explanation:
Let S=0.7+0.77+0.777+.....= 710+77102+777103+.... + up to 20 terms
=7[110+11102+111103+....upto20terms]
=79[910+99102+999103+....upto20terms]
=79[(1−110)+(1−1102)+(1−1103)+....upto20terms]
=79[(1+1+......+upto20terms)−(110+1102+1103+....upto20terms)]
=79[20−110{1−(110)20}1−110]
[ ∴ ∑20i=1=20 and sum of n terms of GPS sn=a(1−rn)1−r when (r<1)]
=79[20−19{1−(110)20}]
=79[1799+19(110)20]
=781[179+(10)−20]