Answer:
Option A
Explanation:
From Arrhenius equation,
$\log \frac{{k_{2}}}{k_{1}}=\frac{-E_{a}}{2.303 R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
Given, $\frac{{k_{2}}}{k_{1}}=2;T_{2}=310 K$
T1=300 K
On putting values,
$\Rightarrow\log 2=\frac{-E_{a}}{2.303\times8.314}\left(\frac{1}{310}-\frac{1}{300}\right)$
$ \Rightarrow$ $ E_{a}=53598.6 J/mol$
=53.6 kJ/mol