1)

For gaseous state, if most probable speed is denoted by C*, average speed by  $\overline{C}$ and root square speed by C, then for a large number of molecules , the ratio s of these speeds are 


A) $C^{*}:\overline{C}:C=1.225:1.128:1$

B) $C^{*}:\overline{C}:C=1.228:1.125:1$

C) $C^{*}:\overline{C}:C=1:1.228:1.225$

D) $C^{*}:\overline{C}:C=1.1.225:1.128$

Answer:

Option C

Explanation:

$C^{*}$  = most probable speed=   $\sqrt{\frac{2RT}{M}}$

  speed= $\sqrt{\frac{8RT}{M}}$

C= mean square speed corrected as 

 rms= $\sqrt{\frac{3RT}{M}}$

$C^{*}$ <$\overline{C}$ <C

$C^{*}$:$\overline{C}$:C= 1 : $\sqrt{\frac{4}{\pi}}:\sqrt{\frac{3}{2}}$

                    =1:1.128:1.225

 As no option corresponds to mean square speed, it is understood as a misprint. It should be the root mean square speed