1)

 Match List I with List II and select the correct answer using the code given below the lists

1352021347_m13.JPG


A) P:4,Q:2,R:3,S:1

B) P:2,Q:3,R:1,S:4

C) P:3,Q:4,R:1,S:2

D) P:1,Q:4,R:3,S:2

Answer:

Option C

Explanation:

 (P) Given ,[a b c]=2

 $\therefore $ Volume of 

  2 (a x b),3(b x c), (c x a)

 $\Rightarrow$      6[axb  bxc  cxa]

$\Rightarrow$   6[a b c]2

 $\Rightarrow$   6 x 4=24

 (Q)    [a b c] =5 , given

 $\therefore$ Volume of 

                           3(a+b),(b+c),2(c+a)

$\Rightarrow$    6[a+b  b+c  c+a]

$\Rightarrow$  6 x2 [a b c]

 $\Rightarrow$ 12 x 5=60

  (R)      $\frac{1}{2}|a\times b|=20$  , given

 $\therefore$     $\triangle_{1}=\frac{1}{2}|(2a+3b)\times(a-b)|$

 $=\frac{1}{2}|2a\times a-2a \times b+3b \times a-3b\times b|$

 $=\frac{1}{2}|2b\times a+3b \times a|=\frac{5}{2}|a\times b|$

     =5 x20=100

  (S)    Given, |a x b|=30

 $\therefore$  |(a+b)x a|=|axb + bxa|

  = |b x a|

 = |a x b|=30