Answer:
Option A
Explanation:
Here, $y^{2}=16x,0\leq y\leq6$
Tangent at F,
yt=x+at2
at x= 0, y= at=4t
Also , (4t2,8t ) satisfy
y=mx+c
$\Rightarrow$ $ 8t=4mt^{2}+3$
$\Rightarrow $ $4mt^{2}-8t+3=0$
$\therefore$ Area of $\triangle$ = $\frac{1}{2}\begin{bmatrix}0 & 3&1 \\0 &4t&1\\ 4t^{2}&8t&1 \end{bmatrix}=\frac{1}{2}4t^{2}(3-4t)$
A= 2[3t2-4t3]
$\therefore$ $\frac{dA}{dt}=2[6t-12t^{2}]=-12t(2t-1)$
$\therefore$ Maximum at t=1/2
and $4mt^{2}-8t+3=0$
$\Rightarrow$ m-4+3=0
$\Rightarrow$ m=1
G(0,4t)$\Rightarrow$ G(0,2)
y1=2
(x0,y0) =(4 t2,8t)=(1,4)
y0=4
Area $=2\left(\frac{3}{4}-\frac{1}{2}\right)=\frac{1}{2}$