1)

 Match List i with List II and select the correct answer using the code given below the lists

1352021998_m11.JPG


A) .P:4,Q:2,R:3,S:1

B) P:4,Q:3,R:2,S:1

C) P:3,Q:4,R:2,S:1

D) P:3,Q:4,R:1,S:2

Answer:

Option B

Explanation:

Here, innermost function is inverse

1452021789_m1.JPG

$\therefore$   put,   $\tan^{-1}y=\theta\Rightarrow\tan\theta=y$

$\Rightarrow \left[\frac{1}{y^{2}}\left(\frac{\cos(\tan^{-1}y) +y \sin(\tan ^{-1}y)}{\cot^{-1}(\tan^{-1}y) +\tan(\sin ^{-1}y)}\right)^{2}+y^{4}\right]^{1/2}$

$\Rightarrow \left[\frac{1}{y^{2}}\left(\frac{\frac{1}{\sqrt{1+y^{2}}}+\frac{y^{2}}{\sqrt{1+y^{2}}}}{\frac{\sqrt{1-y^{2}}}{y}+\frac{y}{\sqrt{1-y^{2}}}}\right)^{2}+y^{4}\right]^{1/2}$

$\Rightarrow\left[\frac{1}{y^{2}}.y^{2}(1-y^{4})+y^{4}\right]^{1/2}=1$

 cos x +cos y= -cos z

 sinx +sin y =-sinz

 on squaring and adding , we get

(Q)  $\cos^{2}x+\sin^{2}x+\cos^{2}y+\sin^{2}y+2\cos x\cos y+2\sin x \sin y=1$
 $\Rightarrow$      $ 2+2(\cos (x-y)=1$
$\Rightarrow$      $(\cos (x-y)=-\frac{1}{2}$
 
$\Rightarrow$     $2\cos^{2}(\frac{x-y}{2})-1=-\frac{1}{2}$
$\Rightarrow$    $2\cos^{2}(\frac{x-y}{2})=\frac{1}{2}$
 $\Rightarrow\cos^{}(\frac{x-y}{2})=\frac{1}{2}$
  (R)   $\cos 2x\left( \cos(\frac{\pi}{4}-x)-\cos(\frac{\pi}{4}+x)\right)+2\sin^{2}x=2\sin x\cos x$
$\cos 2x\left( \sqrt{2}\sin x\right)+2\sin^{2}x=2\sin x\cos x$
$\sqrt{2}\sin x\left( \cos 2 x+\sqrt{2}\sin^{}x-\sqrt{2}\cos x\right)=0$
 $\Rightarrow $    $\sin x=0, (\cos x-\sin x)(\cos x+\sin x-\sqrt{2})=0$
 $\Rightarrow$      $\sec x=1 or \frac{1}{\sqrt{2}}$
 (S)   
            $\cot (\sin^{-1}\sqrt{1-x^{2}})=\sin(\tan ^{-1}(x\sqrt{6}))$
  $\Rightarrow $    $\frac{x}{\sqrt{1-x^{2}}}=\frac{x\sqrt{6}}{\sqrt{1+6x^{2}}}$

=     12 x2  =5
 $x= \sqrt{\frac{5}{12}}=\frac{\sqrt{5}}{2\sqrt{3}}$

  
P:4,Q:3,R:2,S:1