1)

A box B1 contains 1 white ball, 3 red balls and 2 black balls. Another box B2 contains 2 white balls, 3 red balls and 4 black balls. A third box B3 contains 3 white balls, 4 red balls and 5 black balls.

If 2 balls are drawn (without replacement)   from a randomly selected box and one of the balls is white and the other ball is red, the probability that these 2 balls are drawn from box B2 is 


A) $\frac{116}{181}$

B) $\frac{126}{181}$

C) $\frac{65}{181}$

D) $\frac{55}{181}$

Answer:

Option D

Explanation:

 P(Ball drawn from box 2/one is white and one is red)

$=\frac{p(A\cap B)}{p(B)}$

  $=\frac{\frac{1}{3}\times\frac{2\times3}{^{9}C_{2}}}{\frac{1}{3}\left[\frac{1\times3}{^{6}C_{2}}+\frac{2\times3}{^{9}C_{2}}+\frac{3\times4}{^{12}C_{2}}\right]}$

 =   $\frac{\frac{1}{6}}{\frac{1}{5}+\frac{1}{6}+\frac{2}{11}}=\frac{\frac{1}{6}}{\frac{181}{55\times60}}=\frac{55}{181}$