1)

A box B1 contains 1 white ball, 3 red balls and 2 black balls. Another box B2 contains 2 white balls, 3 red balls and 4 black balls. A third box B3 contains 3 white balls, 4 red balls and 5 black balls.

If 1 ball is drawn from each of the  boxes B1,B2 and B3  the probability that all 3 drawn  balls are of the same colour is 


A) $\frac{82}{648}$

B) $\frac{90}{648}$

C) $\frac{558}{648}$

D) $\frac{566}{648}$

Answer:

Option A

Explanation:

1352021929_m10.JPG

P (All 3 drawn balls are of the same colour) 

=  P(www)+P(RRR)+P(BBB)

    $=(\frac{1}{6}\times\frac{2}{9}\times\frac{3}{12})+(\frac{3}{6}\times\frac{3}{9}\times\frac{4}{12})$

    $+(\frac{2}{6}\times\frac{4}{9}\times\frac{5}{12})=\frac{82}{648}$