1)

Let PQ be a focal chord of the parabola y2=4ax.The tangents to the parabola at P and Q meet at a point lying on the line y=2x+a, a >0

 If chord PQ subtends an angle $\theta$ at the vertex of y2 =4ax, then tan $\theta$  is equal to 


A) $\frac{2}{3}\sqrt{7}$

B) $\frac{-2}{3}\sqrt{7}$

C) $\frac{2}{3}\sqrt{5}$

D) $\frac{-2}{3}\sqrt{5}$

Answer:

Option D

Explanation:

Concept involved

 Intersection point of tangents at  $(at_1^2,2at_{1})$ and $(at_2^2,2at_{2})$ is ( at1t2 , a/t1 +t2) ) , also tangents drawn  at end point of focal chord are perpendicular and intersect on directrix

$m_{op}=\frac{2at-0}{at^{2}-0}=\frac{2}{t}$

1352021347_m8.JPG

$m_{oQ}=\frac{-2a/t}{a/t^{2}}=-2t$

$\therefore$   $\tan\theta =\frac{\frac{2}{t}+2t}{1-\frac{2}{t}.2t}=\frac{2(t+\frac{1}{t})}{1-4}$

 where   ,   $t+\frac{1}{t}=\sqrt{5}=\frac{2\sqrt{5}}{-3}$