Answer:
Option D
Explanation:
Concept involved
Intersection point of tangents at $(at_1^2,2at_{1})$ and $(at_2^2,2at_{2})$ is ( at1t2 , a/t1 +t2) ) , also tangents drawn at end point of focal chord are perpendicular and intersect on directrix
$m_{op}=\frac{2at-0}{at^{2}-0}=\frac{2}{t}$
$m_{oQ}=\frac{-2a/t}{a/t^{2}}=-2t$
$\therefore$ $\tan\theta =\frac{\frac{2}{t}+2t}{1-\frac{2}{t}.2t}=\frac{2(t+\frac{1}{t})}{1-4}$
where , $t+\frac{1}{t}=\sqrt{5}=\frac{2\sqrt{5}}{-3}$