Answer:
Option B
Explanation:
Concept involved It is based on the concept of converting into total differential equation (i.e, completing the equation into differential ). So , as to check the function to be increasing or decreasing
Here $f''(x) -2 f'(x) + f(x) \geq e^{x}$
$\Rightarrow $ $f''(x)e^{-x} - f'(x)e^{-x} - f'(x)e^{-x}+f(x)e^{-x} \geq0$
$\Rightarrow \frac{d}{dx}(f'(x)e^{-x})-\frac{d}{dx}(f(x)e^{-x})\geq1$
$\Rightarrow \frac{d}{dx}(f'(x)e^{-x}-f(x)e^{-x})\geq1$
$\Rightarrow \frac{d^{2}}{dx^{2}}(e^{-x}f(x))\geq1$ for all x $\in$ [0,1]
$\therefore$ $\phi(x) =e^{-x}f(x) $ is concave $n\phi$
f(0)=f(1)=0
$\Rightarrow$ $\phi(0)=0=\phi(1)$
$\Rightarrow $ $\phi(x)<0$
$\Rightarrow $ $e^{-x}f(x)<0$
$\therefore$ $ f(x) <0$